

Fisheries Connectivity; Concepts and Examples

Nicholas Kludt, Ph.D. | Red River Fisheries Specialist

Division of Fish and Wildlife | www.dnr.state.us

Today's "Field Trip"

• Welcome to the Red River Basin

Today's "Field Trip"

• Welcome to the Red River Basin

Today's Concepts

- River Habitat
 Concepts
- Fish Ecology & Connectivity
- Connectivity Case Studies

River Habitat and Biology

- Patadromy (freshwater migration) is common among river species
- River habitat gradients influence ecology and movement

Headwaters

River Continuum Concept

• Unifying ecological explanation of systems

Rivers are a gradient

- Communities
- Nutrients
- Habitat

• Red River Basin

- Landscape shaped by glacial forces
 - Glacial Lake Agassiz
- Landscape variation creates strong stream habitat gradients
- Habitat gradients are critical to stream function and fishery

• Stream Habitat Types

Glacial Lake Bed Streams

- Large rivers
- Very low gradient
- Highly sinuous
- Pools and runs, few riffles
- Sand, silt & clay substrate

Key Habitat Notes

- Deep water habitat
- Overwintering for larger spp.
- General lack of spawning habitat

• Stream Habitat Types

Beach Ridge Streams

- Medium & smaller streams
- Relatively high gradient
- Less sinuous
- Riffles & pools common
- Rocky substrates common

Key Habitat Notes

- Higher habitat diversity
- More riffles, key for spawning

• Stream Habitat Types

Moraine Streams

- Smaller & headwater streams
- Lake and wetland chains common
- Various substrates & gradients

Key Habitat Notes

 High habitat diversity; varies among systems

Connectivity Concepts

Habitat connectivity connects life cycles

Connectivity Concepts

Habitat connectivity connects life cycles

- Barrier Impacts on Native Species
 - Statewide 37% species missing upstream
 - Red River Basin 34 % species missing upstream

Reconnecting Rivers: Natural Channel Design in Dam Removal and Fish Passage

Minnesota Department of Natural Resources First Edition

 Restoring critical habitat access for multiple species, life stages yields ecosystem-scale impacts

Seasonal

Headwaters

• Freshwater Mussels

• Freshwater Mussels

Connectivity Benefits

Examples of Connectivity Benefits

- Single species explanations
 - Specific project examples
- Native community & basin status

Typical Connectivity Improvement

Rock Arch Rapids & "Natural Channel Design"

Walleye Benefits

Life History Modes

Climate & Reproduction

tence (n = 59)

Walleye Benefits

Spawning Habitat & Connectivity Program

400

History of decline

Recovery effort

60

• Signs of success, spring of 2022

 1st verified Red River Basin spawning event in over 100 years!

Spawning Habitat & Connectivity

- Spring 2023
- Repeated effort, and <u>new sites</u>

Spawning Habitat & Connectivity

Connectivity Benefits

Examples of Connectivity Benefits

- Single species explanations
- Specific project examples
- Native community & basin status

- Red Lake River
 - Reconnected hundreds of miles in RLR & tributaries

View of dam from right hank

Unstream view of completed rapids

- Red Lake River
 - Reconnected hundreds of miles in RLR & tributaries

2000 – 0.05/net 2005 – 10.7/net

2000 – 0.16/net 2005 – 0.85/net

TRF angler – "1st Sauger I've caught here in 45 years!"

• Sand Hill River

Pre-Project

"It's just not worth fishing those upper 50 miles..." - Local Angler

• Sand Hill River

Post-Project

"We had a great summer fishing – lots of pike. Walleye, bass & catfish, too! We never used to get those."

• Two Rivers

Pre-Project

"Growing up, we all knew fish couldn't get up the dam." - Local Angler

• Two Rivers

Post-Project

"Despite the 2021 drought, Channel Catfish have established a fishable population upstream. Several other species also returned, despite extreme low flows."

Connectivity Benefits

Examples of Connectivity Benefits

- Single species explanations
- Specific project examples
- Native community & basin status

Red River Progress

Native species recoveries

	River	Missing	Recolonized	% Recovery
	Otter Tail	9	8	88
	Buffalo	22	15	68
	Wild Rice	20	16	80
A PROPERTY	Sand Hill	25	12	48

Red River Progress

- Since 1991:
 - 79 barriers identified
 - 69 barriers targeted

• 40 barriers modified

14 current projects

Cleared: 58%

78%

Red River Progress

Currently Funded

- LSOHC 7 projects
- CPL 2 projects
- USACE 2 projects

General Takeaways

- Connectivity is essential for natural aquatic ecosystems.
- Aquatic systems and fish populations generally recover after barriers are removed.
- Connectivity investments improve fishing opportunities, and sustain native species.

Connectivity project site use, numerous species

Nicholas Kludt, Ph.D.

Minnesota Department of Natural Resources

14583 County Highway 19

Detroit Lakes, MN 56501

Phone: 218-846-8298

Nicholas.Kludt@state.mn.us